Difference between revisions of "Distortion"
(Created page with "Truthfully, there's no hard line that separates overdrive from distortion from fuzz. They all kind of hang out in this nebulous world of spillover from a auditory stan...") |
(→Revered Amps) |
||
Line 21: | Line 21: | ||
==Revered Amps== | ==Revered Amps== | ||
− | * Mesa Boogie Mark III | + | There is no way we are going to get the list of "Revered Amps" correct to everyone. There will always be a case to be made for some obscure amp (a 1964 Supro Coronado 1690T a la Jimmy Page), but we're not discussing rare amps. We're talking the workhorses - the ones that people say, to themselves and others, "I want THAT sound". Here are some examples: |
− | * | + | * [[Laney AOR 100]] |
− | * | + | * [[Marshall JCM-800]] |
+ | * [[Mesa Boogie Mark III]] | ||
+ | * [[Mesa Boogie Dual Rectifier]] | ||
+ | * [[Soldano SLO-100]] | ||
+ | * [[Sunn Model T]] |
Revision as of 10:21, 6 October 2017
Truthfully, there's no hard line that separates overdrive from distortion from fuzz. They all kind of hang out in this nebulous world of spillover from a auditory standpoint. If looking at the manner in which the signal is manipulated to get the "clipped signal", it might be easier to arrive at a place where the distinction between the terms makes a difference.
Similar to overdrive and fuzz, distortion is the modification of a sound wave such that peaks of the sound wave are "squared off". Doing so creates higher-order harmonics. This differs from overdrive and fuzz: by the degree of squaring, by the number of frequencies that are "squared off", and the nature of how the squaring occurs.
Distortion is most generally described as a clipped electric instrument signal, typically with both halves of the sine wave of the music signal being clipped. This differs from overdrive in that an overdriven signal tends to have only the "bottom" of the sine wave squared off while the top remains unchanged. However, like overdrive, Distortion tends to have an asymmetry in the top and the bottom of the sine wave. This asymmetry means that the while the peaks of both the top and the bottom of the waveform are clipped, they are clipped resulting in different shapes, or different amounts.
This clipping on both halves of the waveform results in both even-order and odd-order harmonics being generated: Typically created when a signal is amplified beyond the ability of the amplification device (tube or transistor) to functionally handle the desired level of amplification. It is this phenomenon, the attempt to amplify beyond the capacity of the amplification device, that causes the signal to be clipped.
This is also where we get the term "Gain". Gain isn't necessarily the same thing as distortion, however the two are often used interchangeably. Gain is simply the act of boosting a signal. The waveform clipping occurs when the device cannot handle the amount of signal going through the device.
Diodes can also be used to clip a waveform, but because this clipping isn't the result of a failure to meet the functional specification of the electronic device, it's not associated with "Gain".
It's certainly possible for an amplification device to amplify a signal and then for that signal to be fed into diodes which clip them. In fact, this is really the only way you can get diodes to clip. It's a subtle distinction, and in terms of the electronics, it may not be meaningful, but this difference is essentially the difference between "fuzz" and "distortion".
Distortion Pedals
Revered Amps
There is no way we are going to get the list of "Revered Amps" correct to everyone. There will always be a case to be made for some obscure amp (a 1964 Supro Coronado 1690T a la Jimmy Page), but we're not discussing rare amps. We're talking the workhorses - the ones that people say, to themselves and others, "I want THAT sound". Here are some examples: